

EXPERT PIPE SOLUTIONS FOR MECHANICAL ENGINEERING

MECHANICAL PIPES

Bringing machines to life

Just imagine today's life without energy...no lighting, no mechanisms, no electricity...Impossible! Energy is a cornerstone of 21st century and when we say energy we always mean mechanical engineering. Our customers whether involved in automotive or power generation, mining or shipbuilding industries are experts in the use of energy. They apply principles of energy to bring machines to life.

Working in close tandem with our customers, we have created a product designed to meet their specific needs. Understanding the production process and peculiarities of machine building companies, we can anticipate and respond to their ever changing needs and develop products that satisfy these new requirements.

We are focused on direct business with end-customers, i.e. business-to-business. That is why we are constantly improving our services, reducing delivery times and creating efficient channels of communication between Interpipe and its clients.

We do not only justify clients' expectations, we exceed them.

Vera Smal, Director of Tubular Sales for Europe and Ukraine

CONTENT

1	Mechanical pipes	
1.1	EN 10297 - 1	Seamless circular steel tubes for mechanical and general engineering purposes.
1.2	EN 10294 - 1	Hollow bars for machining: Non-alloy and alloy steels.
1.3	EN 10210 - 1, 2	Hot finished structural hollow sections of non-alloy and fine grain steels.
1.4	EN 10220, DIN 1629	Seamless circular tubes of non-alloy steels with special quality requirements.
1.5	EN 10220, DIN 1630	Seamless circular tubes of non-alloy steels with very high quality requirements.
1.6	ASTM A 519	Seamless Carbon and Alloy Steel Mechanical Tubing.
1.7	GOST 8731, GOST 8732	Seamless hot-rolled steel tubes.
1.8	GOST 23270	Hollow bars for mechanical applications.
1.9	GOST 8733, GOST 8734	Seamless cold-rolled steel pipes.
2	Precision steel tube	es
2.1	EN 10305 -1	Seamless cold-drawn steel tubes for precision applications.
2.2	DIN 2391 - 1, 2	Seamless precision steel tubes.
3	Bearing tubes	
3.1		Bearing hot-rolled tubes.
3.2		Bearing cold-rolled tubes.

EXPERT PIPE SOLUTIONS FOR MECHANICAL ENGINEERING

Our product strategy in the mechanical pipes sector is defined by a thorough market analysis and investigation of our clients' needs in the automotive, shipbuilding and power generation industries.

Companies producing machinery use our products as basic elements for the manufacture of vehicles of different configurations, hydraulic cylinders, bearings, steam generators, mining equipment and high-precision parts of aeronautical engineering and cars.

Basic car components for vehicles are manufactured from our products

INTERPIPE IS A GLOBAL STEEL PIPE PRODUCER AND SUPPLIER

Interpipe is a global steel pipe producer - one of the top ten largest manufacturers of seamless pipes in the world. In 2013 the company sold over 1 million tons of steel pipes.

The company's products are supplied to 80 countries all over the world through a chain of commercial offices located in Ukraine, Russia, Kazakhstan, Europe, the USA and the Middle East.

Interpipe structure includes production facilities located in Dnipropetrovsk region, one of the major industrial centers of Ukraine. The company continues to invest heavily in the development and modernization of its mills.

Interpipe has a vertically integrated business structure which includes 5 high efficient mills. Such structure allos controlling product quality at every stage: from manufacturing of raw materials to delivery of final products to customers.

Interpipe Steel Dnepropetrovsk, Ukraine

Interpipe NTRP
Dnepropetrovsk, Ukraine

Interpipe Niko Tube Nikopol, Ukraine

Interpipe NMPP Novomoskovsk, Ukraine

Selling to customers globally - key markets

Interpipe M

PIPE PRODUCTS FOR DIVERSE APPLICATIONS

When designing any of its products, Interpipe is always focused on exact customer requirements and the field of its application. Our products are used throughout the world in diverse applications - from mining, heavy machinery to automobile industries. We design and produce steel pipes for special customers' needs:

Hydraulic cylinders

Tube is a key element of any hydraulic machinery device. Interpipe produces precision seamless cold drawn tubes suitable for the manufacturing of hydraulic cylinders.

The tubes are produced with close tolerances out of easily weldable steel. Such tubes undergo special treatment to guarantee good machinability. Upon the request from our customers tubes may be produced quite close to the finished product dimensions. **Application: motocranes, tractors and trucks**

Bearings

Interpipe tubes perfectly meet the requirements of the advanced automotive industry. The close tolerances of steel tubes in diameter and thickness, exceptional concentricity and a smooth finish, both inside and outside, facilitate engineers' obtainment of uniform flow under controlled temperature and pressure. Its excellent low temperature properties ensure smooth hardening in the process of cold working.

Application: car components

Mining equipment

Interpipe products are used in mining explorations. For these applications, Interpipe supplies seamless tubes for engineering purposes, where the critical factors are weight control and high stress resistance are the critical factors. These types of tubes have high-performance steel characteristics, ensured by the heat treatment. Our products are used for applications where the ratio between mass and space occupied is especially critical.

Application: powered roof supports, hydraulic pit props

Cranes and agricultural engineering

Interpipe product range covers engineering applications where such factors as weight control and high stress resistance are of top priority. Our seamless pipes are used in lifting and load handling systems and as components of lift arms in mobile cranes. High-strength seamless steel pipes are also used in agricultural-construction. This type of pipes has high-tensile properties and flexibility and may be designed and produced with any heights and strengths.

Application: Tour cranes, tractors and harvesters

Rollers

The tube material and tube diameter determine the load capacity and operation of conveyor rollers. Interpipe product range includes tubes for different application rollers. The Company ensures good machinability and excellent concentricity of the product.

Application: conveyor rollers, tubes for textile, paper, and printing industries, steel plant rollers

Downhole equipment

Being focused on satisfying the needs of oil and gas companies Interpipe offers a range of products for downhole equipment. Our products are applied in diverse hostile environments as basic elements for submerged pumps and engines. Pipes used for downholes are made of steel sustaining high gravity or pressures. These pipes have close tolerances and high straightness.

Application: submerged pumps

QUALITY-FOCUSED OPERATIONS:

Interpipe considers quality control as the key part of its production activities, exceeding customer needs. The quality of our products is approved by international standards - EN, ASTM, NF A and GOST.

Quality of structural steel grades: even texture, high weldability and good machinability

Interpipe has in-house steel billets production, ensuring steel quality control and continuous monitoring of its parameters. High quality characteristics of steel are provided by the subsequent processing at the out-of-furnace steel treatment complex. The ladles with metal are delivered in turn to the furnace ladle unit, where the metal finishing and refining take place. Steel blowing in the ladle by argon along with the refining process ensure low content of phosphorus and sulphur in the finished metal and uniform distribution of other elements. Degassing process is carried out by removing hydrogen, nitrogen and oxygen dissolved in metal at the vacuum degassing unit simultaneously with argon blowing.

As a result, these fine-grain structural steel grades are characterised by maximal yield strength rate, good weldability and high resistance to brittle cracking. These grades are used mainly for hydraulic engineering, heavy machinery, shipbuilding and crane constructions.

Quality management system

Interpipe mills are certified in accordance with Quality management system ISO 9001 and also have certification for energy industry - API Q1. Every mill has quality mannual that is the basic document determining quality policy.

Ongoing investments program

In our business, investments play a crucial role in making decisions on the Company's future. Interpipe regularly invests in development of its production capacities, improvement of the output quality, and expansion of its product range. Currently we are carrying out a major investment program that will reinforce the Company's vertical integration, boost our capacity in production of high quality products, and enhance our operating efficiency in pipe and wheel production.

Interpipe Steel – state-of-the-art steel melting facility

In 2012 Interpipe commissioned an innovative electric steel melting facility Interpipe Steel. Its leading technology, labor conditions, and environmental protection standards, ensure that it represents a new phase in the industry. Total volume of investments in the mill amount to 700 million US dollars.

The turn-key construction of the mill has been carried out by Danieli Company – global leader in metallurgical equipment manufacturing. Danieli ensures the design, manufacturing, delivery, and assembly of the principal technological and ancillary equipment, buildings and communications of the new mill.

Interpipe Steel is the key project for Interpipe, designed to provide the Company's pipe and wheel production with its own steel billets. When the mill reaches its designed capacity rate of 1.32 million tons a year, the self-sufficiency in billets for Interpipe seamless pipes' production will rise to 90%.

SEAMLESS PIPES FOR MECHANICAL APPLICATIONS EN 10297-1

Seamless circular steel tubes for mechanical and general engineering purposes

Chemical composition

Charless de	Elements co	ntent, %											
Steel grade	С	Si	Mn	Р	S	Cr	Мо	Ni	Al	Cu	N	Nb	V
E235	≤0,17	≤0,35	≤1,2	≤0,030	≤0,035								
E275	≤0,21	≤0,35	≤1,4	≤0,030	≤0,035								
E315	≤0,21	≤0,30	≤1,5	≤0,030	≤0,035								
E355	≤0,22	≤0,55	≤1,6	≤0,30	≤0,035								
E470	0,16-0,22	0,10-0,50	1,30-1,70	≤0,030	≤0,035				≥ 0,010		≤ 0,020	≤ 0,07	0,08-0,15
E275K2	≤0,20	≤0,4	0,50-1,40	≤0,030	≤0,035	≤0,030	≤0,010	≤0,030	≥ 0,020	≤0,035	≤ 0,015	≤ 0,05	≤ 0,05
E355K2	≤0,20	≤0,5	0,90-1,65	≤0,030	≤0,035	≤0,030	≤0,010	≤0,050	≥ 0,020	≤0,035	≤ 0,015	≤ 0,05	≤ 0,12
E420J2	0,16-0,22	0,10-0,50	1,30-1,70	≤0,030	≤0,035	≤0,030	≤0,080	≤0,040	≥ 0,010	≤0,030	≤ 0,020	≤ 0,07	0,08-0,15
E460K2	≤0,20	≤0,6	1,00-1,70	≤0,030	≤0,035	≤0,030	≤0,010	≤0,080	≥ 0,020	≤0,070	≤ 0,025	≤ 0,05	≤ 0,02
E590K2	0,16-0,22	0,10-0,50	1,30-1,70	≤0,030	≤0,035	≤0,030	≤0,080	≤0,040	≥ 0,010	≤0,030	≤ 0,020	≤ 0,07	0,08-0,15
E730K2	≤0,20	≤0,5	1,40-1,70	≤0,030	≤0,035	≤0,030	0,30-0,45	0,30-0,70	≥ 0,020	≤0,020	≤ 0,020	≤ 0,05	≤ 0,12
25CrMo4	0,22-0,29	≤0,4	0,6-0,9	≤0,035	≤0,035	0,9-1,2	0,15-0,30						
34CrMo4	0,30-0,37	≤0,4	0,6-0,9	≤0,035	≤0,035	0,9-1,2	0,15-0,30						
42CrMo4	0,38-0,45	≤0,4	0,6-0,9	≤0,035	≤0,035	0,9-1,2	0,15-0,30						

Mechanical properties

		Yield strengt	h, R _{EH} N/mm²		Tensile streng	th Rm, N/mm²		Elongation A,	%	Impact test, K	<i>l</i> , J
Steel grade	Delivery condition	Wall thicknes	s Tn, mm		Wall thickness	Tn, mm				Test temperat	ure -20°C
		<16	16 <tn≤40< th=""><th>40<tn≤65< th=""><th><16</th><th>16<tn≤40< th=""><th>40<tn≤65< th=""><th>Longitudinal direction</th><th>Transverse direction</th><th>Longitudinal direction</th><th>Transverse direction</th></tn≤65<></th></tn≤40<></th></tn≤65<></th></tn≤40<>	40 <tn≤65< th=""><th><16</th><th>16<tn≤40< th=""><th>40<tn≤65< th=""><th>Longitudinal direction</th><th>Transverse direction</th><th>Longitudinal direction</th><th>Transverse direction</th></tn≤65<></th></tn≤40<></th></tn≤65<>	<16	16 <tn≤40< th=""><th>40<tn≤65< th=""><th>Longitudinal direction</th><th>Transverse direction</th><th>Longitudinal direction</th><th>Transverse direction</th></tn≤65<></th></tn≤40<>	40 <tn≤65< th=""><th>Longitudinal direction</th><th>Transverse direction</th><th>Longitudinal direction</th><th>Transverse direction</th></tn≤65<>	Longitudinal direction	Transverse direction	Longitudinal direction	Transverse direction
		Not less									
E235	+AR or +N	235	225	215	360	360	360	25	23		-
E275	+AR or +N	275	265	255	410	410	410	22	20		-
E315	+AR or +N	315	305	295	450	450	450	21	19		-
E355	+AR or +N	355	345	335	490	490	490	20	18		-
E470	+AR	470	430	-	650	600	-	17	15		-
E275K2	+N	275	265	255	410	410	410	22	20	40	27
E355K2	+N	355	345	335	490	490	470	20	18	40	27
E420J2	+N	420	400	390	600	560	530	19	17	27	20
E460K2	+N	460	440	430	550	550	550	19	17	40	27
E590K2	+QT*	590	540	-	700	650	-	16	14	40	27
E730K2	+QT*	730	670	-	790	750	-	15	13	40	27

Note:

* - at +QT conditions pipes with outside diameter ≥100 mm and wall thickness ≤ 28 mm can be produced.

		Yield s	trength,	R _{EH} N/mm	2	Tensile	strength	n Rm, N/m	m2				Elong	ation A,	%						ct test, l tempera	
Steel grade	Delivery condition	Wall th	ickness [·]	Tn, mm																		
3			8 <tn< td=""><td>20<tn< td=""><td>50<tn< td=""><td><8</td><td>8<tn< td=""><td>20<tn< td=""><td>50<tn< td=""><td><8</td><td></td><td>8<tr< td=""><td>1≤20</td><td>20<tn:< td=""><td>≤50</td><td>50<tn:< td=""><td>£80</td><td><8</td><td>8<tn≤2< td=""><td>20</td><td>20<tn< td=""><td>ı≤50</td></tn<></td></tn≤2<></td></tn:<></td></tn:<></td></tr<></td></tn<></td></tn<></td></tn<></td></tn<></td></tn<></td></tn<>	20 <tn< td=""><td>50<tn< td=""><td><8</td><td>8<tn< td=""><td>20<tn< td=""><td>50<tn< td=""><td><8</td><td></td><td>8<tr< td=""><td>1≤20</td><td>20<tn:< td=""><td>≤50</td><td>50<tn:< td=""><td>£80</td><td><8</td><td>8<tn≤2< td=""><td>20</td><td>20<tn< td=""><td>ı≤50</td></tn<></td></tn≤2<></td></tn:<></td></tn:<></td></tr<></td></tn<></td></tn<></td></tn<></td></tn<></td></tn<>	50 <tn< td=""><td><8</td><td>8<tn< td=""><td>20<tn< td=""><td>50<tn< td=""><td><8</td><td></td><td>8<tr< td=""><td>1≤20</td><td>20<tn:< td=""><td>≤50</td><td>50<tn:< td=""><td>£80</td><td><8</td><td>8<tn≤2< td=""><td>20</td><td>20<tn< td=""><td>ı≤50</td></tn<></td></tn≤2<></td></tn:<></td></tn:<></td></tr<></td></tn<></td></tn<></td></tn<></td></tn<>	<8	8 <tn< td=""><td>20<tn< td=""><td>50<tn< td=""><td><8</td><td></td><td>8<tr< td=""><td>1≤20</td><td>20<tn:< td=""><td>≤50</td><td>50<tn:< td=""><td>£80</td><td><8</td><td>8<tn≤2< td=""><td>20</td><td>20<tn< td=""><td>ı≤50</td></tn<></td></tn≤2<></td></tn:<></td></tn:<></td></tr<></td></tn<></td></tn<></td></tn<>	20 <tn< td=""><td>50<tn< td=""><td><8</td><td></td><td>8<tr< td=""><td>1≤20</td><td>20<tn:< td=""><td>≤50</td><td>50<tn:< td=""><td>£80</td><td><8</td><td>8<tn≤2< td=""><td>20</td><td>20<tn< td=""><td>ı≤50</td></tn<></td></tn≤2<></td></tn:<></td></tn:<></td></tr<></td></tn<></td></tn<>	50 <tn< td=""><td><8</td><td></td><td>8<tr< td=""><td>1≤20</td><td>20<tn:< td=""><td>≤50</td><td>50<tn:< td=""><td>£80</td><td><8</td><td>8<tn≤2< td=""><td>20</td><td>20<tn< td=""><td>ı≤50</td></tn<></td></tn≤2<></td></tn:<></td></tn:<></td></tr<></td></tn<>	<8		8 <tr< td=""><td>1≤20</td><td>20<tn:< td=""><td>≤50</td><td>50<tn:< td=""><td>£80</td><td><8</td><td>8<tn≤2< td=""><td>20</td><td>20<tn< td=""><td>ı≤50</td></tn<></td></tn≤2<></td></tn:<></td></tn:<></td></tr<>	1≤20	20 <tn:< td=""><td>≤50</td><td>50<tn:< td=""><td>£80</td><td><8</td><td>8<tn≤2< td=""><td>20</td><td>20<tn< td=""><td>ı≤50</td></tn<></td></tn≤2<></td></tn:<></td></tn:<>	≤50	50 <tn:< td=""><td>£80</td><td><8</td><td>8<tn≤2< td=""><td>20</td><td>20<tn< td=""><td>ı≤50</td></tn<></td></tn≤2<></td></tn:<>	£80	<8	8 <tn≤2< td=""><td>20</td><td>20<tn< td=""><td>ı≤50</td></tn<></td></tn≤2<>	20	20 <tn< td=""><td>ı≤50</td></tn<>	ı≤50
		<8	≤20	≤50	≤80	<8	≤20	≤50	≤80	Ι	t	1	t	1	t	1	t	1	1	t	1	t
		Not les	iS																			
25CrMo4	+QT*	700	600	450	400	900	800	700	700	12	10	14	12	15	13	16	14	45	50	32	50	32
34CrMo4	+QT**	800	650	550	500	1000	900	800	750	11	9	12	10	14	12	15	13	35	40	25	45	27
42CrMo4	+QT***	900	750	650	550	1100	1000	900	800	10	8	11	9	12	10	13	10	30	35	22	35	22

Note:

- I Longitudinal sample, t Transversal sample
- * at +QT conditions pipes with outside diameter ≥100 mm and wall thickness ≤ 28 mm may be produced, for pipes with other dimensions +QT conditions are modeled on samples.
- ** pipes are supplied at +AR conditions, +QT conditions are modeled on samples.
- ***- pipes are supplied at +A conditions, +QT conditions are modeled on samples.

Cold-rolled

0D (mm)	Wall thic	kness, mm												
	3,6	4,0	4,5	5,0	5,6	6,3	7,1	8,0	8,8	10,0	11,0	12,5	14,2	16,0
33,7														
35,0														
38,0														
40,0														
42,4														
44,5														
48,3														
51,0														
54,0														
57,0														
60,3														
63,5														
70,0														
73,0														
76,1														
82,2														

Hot-rolled

0	Wal	l thic	knes	S																									
Outside diameter	3,2	3,6	4,0	4,5	5,0	5,6	6,3	7,1	8,0	8,8	10,0	11,0	12,5	14,2	16,0	17,5	20,0	22,2	25,0	28,0	30,0	32,0	36,0	40,0	45,0	50,0	55,0	60,0	65,0
33,7																													
38,0																													
42,4																													
42,4 48,3																													
51																													
51 57																													
60,3																													
63,5																													
73,0																													
76,1																													
82,5																													
88,9																													
101,6																													
108,0																													
114,3																													
121,0																													
127,0																													
133,0																													
139,7																													
141,3																													
152,4																													
159,0																													
168,3																													
177,8																													
193,7																													
203,0																													
219,1																													
229,0																													
244,5																													
273,0																													
298,5																													
323,9																													
355,6																													
368.0																													

Dimensional tolerances

Outside diameter, mm	Permissible deviation of Outside Diameter	Permissible deviation of Wal	Thickness for WT/OD	
Outside diameter, min	Permissible deviation of Outside Diameter	OD/WT < 0,025	0,025< OD/WT ≤ 0,05	OD/WT > 0,05
≤ 219,1	± 1% or 0,5 mm – the greatest value	± 12,5 % or ± 0,4 mm - the g	reatest value	
> 219,1	± 1%	± 20%	± 15%	± 12,5%

Lengths

Pipes are supplied with lengths according to standard requirements.

Any lengths different from the standard ones are subject to additional negotiations.

Protection

Pipes are supplied:

- black and bare
- external varnished with black or clear lacquer
- oiled

Upon request pipes ends are protected with plastic caps.

Marking

Pipes are supplied with marking according to standards and customer requests.

Marking is painted and/or hard stenciled on pipes ends. The same data, as well as additional information according to customer's request, are indicated on the bundle tags.

Certification

EN 10294-1

Hollow bars for machining: Non alloy and alloy steels.

Chemical composition

	Elements co	ntent, %											
Steel grade	c	Si	Mn	c	V	Р	Cr	Ni	Мо	Cu	Al	Nb	Ti
	C	21	IVIII	3	V	Not more							
E355	≤0.22	≤0.5	≤1.5	0,015- 0,050	≤0,10	0,045	0.30	0,40	0,08	0,30	0,06	0,05	0,05
20MnV6	0,16-0,22	0,10-0,50	1,30-1,70	0,015- 0,050	0,08-0,15	0,045	0,30	0,40	0,08	0,30	0,06	0,07	0,05

Mechanical properties

		Yield strength	, R _{EH} N/mm²			Tensile streng	th Rm, N/mm2			Florestics	Impact test, KV, J
Steel grade	Delivery condition	Wall thickness	Tn, mm			Wall thickness	Tn, mm			Elongation A,%	Test temperature -20°C
		<16	16 <tn≤25< th=""><th>25<tn≤40< th=""><th>40<tn≤50< th=""><th><16</th><th>16<tn≤25< th=""><th>25<tn≤40< th=""><th>40<tn≤50< th=""><th></th><th></th></tn≤50<></th></tn≤40<></th></tn≤25<></th></tn≤50<></th></tn≤40<></th></tn≤25<>	25 <tn≤40< th=""><th>40<tn≤50< th=""><th><16</th><th>16<tn≤25< th=""><th>25<tn≤40< th=""><th>40<tn≤50< th=""><th></th><th></th></tn≤50<></th></tn≤40<></th></tn≤25<></th></tn≤50<></th></tn≤40<>	40 <tn≤50< th=""><th><16</th><th>16<tn≤25< th=""><th>25<tn≤40< th=""><th>40<tn≤50< th=""><th></th><th></th></tn≤50<></th></tn≤40<></th></tn≤25<></th></tn≤50<>	<16	16 <tn≤25< th=""><th>25<tn≤40< th=""><th>40<tn≤50< th=""><th></th><th></th></tn≤50<></th></tn≤40<></th></tn≤25<>	25 <tn≤40< th=""><th>40<tn≤50< th=""><th></th><th></th></tn≤50<></th></tn≤40<>	40 <tn≤50< th=""><th></th><th></th></tn≤50<>		
		Not less than									
E355	+AR	355	345	335	335	490	490	470	470	18	-
E333	+N	355	345	335	335	490	490	470	470	20	27
	+AR	470	460	430	430	650	620	600	550	17	-
20MnV6	+N	420	400	380	380	600	560	530	530	19	27
	+QT *	590	540	480	480	700	650	570	570	16	40

Note:

Cold-rolled

^{* -} at +QT conditions pipes with outside diameter ≥100 mm and wall thickness ≤ 28 mm can be produced.

0D (mm)	Wall thick	ness, mm												
	3,6	4,0	4,5	5,0	5,6	6,3	7,1	8,0	8,8	10,0	11,0	12,5	14,2	16,0
33,7														
35,0														
38,0														
40,0														
42,4														
44,5														
48,3														
51,0														
54,0														
57,0														
60,3														
63,5														
70,0														
73,0														
76,1														
82,2														

Hot-rolled

00 ()	Wall th	nickness, ı	mm																
OD (mm)	7	8	9	10	11	12	14,2	16	17,5	20	22,2	25	28	30	32	36	40	45	50
82,5																			
83,9																			
101,6																			
108																			
114,3																			
127																			
133																			
139,7																			
152,4																			
159																			
168,3																			
177,8																			
193,7																			
203,0																			

Dimensional tolerances

Outside diameter per	missible deviation	Wall thickness per	missible deviation
0D ≤ 75 75 < 0D ≤ 180 0D > 180	± 0,75 mm ± 0,75 mm ± 1 %	0D ≤ 180 mm, WT ≤ 15 mm WT > 15 0D > 180 mm, WT ≤ 30 mm WT > 30 mm	±12,5 % or ±0,4 mm – the greatest value ± 10 % ±12,5 % ± 10 %

Lengths

Pipes are supplied with lengths according to standard requirements.

Any lengths different from the standard ones are subject to additional negotiations.

Protection

Pipes are supplied:

- black and bare
- external varnished with black or clear lacquer
- oiled

Upon request pipes ends are protected with plastic caps.

Marking

Pipes are supplied with marking according to standards and customer requests.

Marking is painted and/or hard stenciled on pipe ends. The same data, as well as additional information according to customer's request, are indicated on the bundle tags.

Certification

EN 10210-1, 2

Hot finished structural hollow section of non-alloy and fine grain steels

Chemical composition

	Elements o	ontent, %, max.						Maximal carbo	n equivalent valu	e CEV %
Steel grade	C For nomin	nal wall thickness, mm	Si	Ma	D	c	M	For nominal wa	all thickness, mm	
	≤40	>40	21	Mn	P	3	N	≤16	>16 ≤40	>40 ≤65
S235JRH	0,17	0,20	-	1,40	0,040	0,040	0,009	0,37	0,39	0,41
S275J0H	0,20	0,22	-	1,50	0,035	0,035	0,009	0,41	0,43	0,45
S275J2H	0,20	0,22	-	1,50	0,030	0,030	-	0,41	0,43	0,45
S355JOH	0,22	0,22	0,55	1,60	0,035	0,035	0,009	0,45	0,47	0,50
S355J2H	0,22	0,22	0,55	1,60	0,030	0,030	-	0,45	0,47	0,50
S355K2H	0,22	0,22	0,55	1,60	0,030	0,030	-	0,45	0,47	0,50

Mechanical properties

	Yield strength	n, R _{EH} MPa			Tensile	Elongation A,	0/0		Impact test, KV, J			
	Nominal wall	thickness мм			strength	Nominal wall	thickness, mm		Test temperat	ture, °C		
Steel grade	≤16	>16	>40	>63	Rm, MPa	≤40	>40	>63	-20	0	+20	
		≤40	≤63				≤63					
	Not less				Not less							
S235JRH	235	225 215 215		360-510	26	25	24	-	-	27		
S275J0H	275	265	255	245	410-560	23	23 22		-	27	-	
S275J2H	275	265	255	245	410-560	23	22	21	27	-	-	
S355JOH	355	345	335	325	470-630	22	21	20	-	27	-	
S355J2H	355	345	335	325	470-630	22	21	20	27	-	-	
S355K2H	355	345 335 325		470-630	22	21	20	40	-	-		

Outside diameter, mm	3,2	4,0	5,0	6,3	8,0	10,0	12,5	14,2	16,0	20,0	25,0	30,0	32,0	36,0	40,0	45,0	50,0	55,0	60,0	65,0
33,7																				
42,4																				
48,3																				
60,3																				
76,1																				
88,9																				
101,6																				
114,3																				
139,7																				
168,3																				
177,8																				
193,7																				
219,1																				
229,0																				
244,5																				
254,0																				
267,0																				
273,0																				
323,9																				
355,6																				
368,0																				

Dimensional tolerances

Outside diameter permissible deviation	Wall thickness permissible deviation
±1 % (but not less than ±0.5 mm and not more than ±10 mm)	- 10 %, + 15%

Lengths

Pipes are supplied with lengths according to standard requirements.

Any lengths different from the standard ones are subject to additional negotiations.

Protection

Pipes are supplied:

- black and bare
- external varnished with black or clear lacquer
- oiled

Upon request pipes ends are protected with plastic caps.

Marking

Pipes are supplied with marking according to standard and customer request.

Marking is painted and/or hard stenciled on pipe ends. The same data, as well as additional information according to customer's request, are indicated on the bundle tags.

Certification

EN 10220, DIN 1629

Seamless circular tubes of non-alloy steels with special quality requirements

Chemical composition

Steel grade	Elements content, %						
	С	Mn	Si	S	Р	N*	Al
	Not more						
St 37.0	0.17	-	-	0.040	0.040	0,009	-
St 44.0	0.21	-	-	0.040	0.040	0.009	-
St 52.0	0.22	1.60	0.55	0.040	0.035	-	≥0.02

Note:

Exceeding the specified Nitrogen content exceeding is possible if for every 0,001% of Nitrogen the Phosphorus content goes down by 0,005 % from the specified value, but not more than 0,012% in heat analysis.

Mechanical properties

	Yield strength, R _{EH} N/mm² For wall thickness, mm				Elongation A, %	
Steel grade	≤16	>16≤40	>40≤65	Tensile strength Rm, N/mm ²	Longitudinal direction	Transverse direction
	Not less				Not less	
St 37.0	235	225	215	350-480	25	23
St 44.0	275	265	255	420-550	21	19
St 52.0	355	345 335		500-650	21	19

Hot-rolled

Outside diameter, mm	3,2	3,6	4,0	5,0	6,3	8,0	10,0	12,5	14,2	16,0	20,0	25,0	30,0	32,0	36,0	40,0	45,0	50,0	55,0	60,0	65,0
33,7																					
42,4																					
48,3																					
60,3																					
76,1																					
88,9																					
101,6																					
114,3																					
139,7																					
168,3																					
177,8																					
193,7																					
219,1																					
244,5																					
273,0																					
323,9																					
355,6																					

Dimensional tolerances

Outside diameter, mm	Outside diameter permissible deviation
Up to 100	± 1 % (but not less than ±0.5 mm)
Above 100 up to 200	± 1 %
Above 200	± 1 %

Wall thickness peri	missible deviation							
For OD up to 130 m	ım		For OD above 130 mm	and up to 320 mm and	wall thickness S	For OD above 320) mm	
+ 15%	+ 12.5%	±9%	+ 17.5%	+ 15%	±12.5%	+ 20%	+ 15%	+ 12.5%
- 10%	- 10%		- 12.5%	- 10%		- 15%	- 12.5%	- 10%

Lengths

Pipes are supplied with lengths according to standard requirements. Any lengths different from the standard ones are subject to additional negotiations.

Protection

Pipes are supplied:

- black and bare
- external varnished with black or clear lacquer

Upon request pipes ends are protected with plastic caps.

Marking

Pipes are supplied with marking according to standards and customer requests.

Marking is painted and/or hard stenciled on pipe ends. The same data, as well as additional information according to customer's request, are indicated on the bundle tags.

Certification

EN 10220, DIN 1630

High-performance seamless circular unalloyed steel pipes

Chemical composition

Steel grade	Elements content, %					
	С	Si	S	Р	Mn	Al
	Not more					
St 37.4	0.17	0,35	0.040	0.040	≥0.35	≥0.02
St 44.4	0.20	0,35	0.040	0.040	≥0.40	≥0.02
St 52.4	0.22	0.55	0.040	0.035	≤1.60	≥0.02

Mechanical properties

Steel grade	Yield strength, R _{EH} N/mm ² For wall thickness,			Tensile strength	Elongation A, %		Impact test, KV, J Test temperature	-20°C
J. 2.2.2	≤16	>16≤40	>40≤65	Rm, N/mm ²	Ι	t	1	t
	Not less				Not less		Not less	
St 37.4	235	225	215	350-480	25	23	43	27
St 44.4	275	265	255	420-550	21	19	43	27
St 52.4	355	345	335	500-650	21	19	43	27

Note:

l – Longitudinal sample, t- transverse sample.

Outside diameter, mm	3,2	3,6	4,0	5,0	6,3	8,0	10,0	12,5	14,2	16,0	20,0	25,0	30,0	32,0	36,0	40,0	45,0	50,0	55,0	60,0	65,0
33,7																					
42,4																					
48,3																					
60,3																					
76,1																					
88,9																					
101,6																					
114,3																					
139,7																					
168,3																					
177,8																					
193,7																					
219,1																					
244,5																					
273,0																					
323,9																					
355,6																					

Dimensional tolerances

Outside diameter mm	Outside diameter permissible deviation	
Outside diameter, mm	Pipe body	Pipe ends (100 mm from pipe end)
≤ 100	± 1% (not less than ±0,5 mm)	± 0,4 mm
100 <d 200<="" td="" ≤=""><td>± 1%</td><td>± 0,5 %</td></d>	± 1%	± 0,5 %
> 200	± 1%	$\pm0,6\%$ (Permissible deviation might be referred to inside diameter upon agreement, but should take into account wall thickness deviation)

Wall thickness perr	Wall thickness permissible deviation													
For OD up to 130 m	m		For OD above 130 m	nm and up to 320 mm	and wall thickness	For OD above 320 mm								
WT up to 2 Sn	WT above 2 Sn up to 4 Sn	WT above 4 Sn	WT up to 0.05 D	WT above 0.05 D up to 0.11 D	WT above 0.11D	WT up to 0.05 D	WT above 0.05 D up to 0.9 D	WT above 0.9 D						
+ 15% - 10%	5% + 12.5 % ± 9 %		+ 17.5 % - 12.5 %	± 12.5 %	± 10 %	+ 20 % - 10 %	+ 15 % - 12.5 %	+ 12.5% - 10%						

Lengths

Pipes are supplied with lengths according to standard requirements.

Any lengths different from the standard ones are subject to additional negotiations.

Protection

Pipes are supplied:

- black and bare
- external varnished with black or clear lacquer

Upon request pipes ends are protected with plastic caps.

Marking

Pipes are supplied with marking according to standards and customer requests.

Marking is painted and/or hard stenciled on pipe ends. The same data, as well as additional information according to customer's request, are indicated on the bundle tags.

Certification

ASTM A 519

Seamless Carbon and Alloy Steel Mechanical Tubing

Chemical composition

Stool grade	Elements content,	%						
Steel grade	С	Mn	Р	S	Si	Ni	Cr	Mo
1026	0.22-0.28	0.60-0.90	≤0.025%	≤0.025%				
4130	0.28-0.33	0.40-0.60	≤0.025%	≤0.025%	0.15-0.35	-	0.80-1.10	0.15-0.25
4140	0,38-0,43	0,75-1,0	≤0.025%	≤0.025%	0.15-0.35	-	0,80-1,10	0,15-0,25

Typical Tensile Properties and Hardness

		Tensile strength		Yield strength		Flooration A 0/	Hardage HDD							
Grade Designation	Delivery condition	ksi	MPa	ksi	MPa	Elongation A, %	Hardness, HRB							
		Not less												
	HR	55	379	35	241	25	60							
	CW	75	517	65	448	5	80							
1026	SR	70	483	55	379	8	75							
	А	53	365	30	207	25	57							
	N	55	379	36	248	22	60							
	HR	90	621	70	483	20	89							
4130	SR	105	724	85	586	10	95							
4130	А	75	517	55	379	30	81							
	N	90	621	60	414	20	89							
	HR	120	855	90	621	15	100							
4140	SR	120	855	100	689	10	100							
4140	A	80	552	60	414	25	85							
	N	120	855	90	621	20	100							

HR- hot-rolled, CW- cold-worked, SR- stress relieved, A - annealed, N- normalized

Wall thicl	(ness	,												,			,			
inch		0,280	0,310	0,350	0,390	0,430	0,470	0,555	0,620	0,688	0,780	0,870	0,980	1,102	1,181	1,250	1,410	1,570	1,771	1,968
OD (inch)	OD (mm)	7	8	9	10	11	12	14,2	16	17,5	20	22,2	25	28	30	32	36	40	45	50
3,250`	82,5																			
3,300`	83,9																			
4,000`	101,6																			
4,250`	108																			
4,500`	114,3																			
5,000`	127																			
5,250`	133																			
5,500`	139,7																			
5,980`	152,4																			
6,250`	159																			
6,610`	168,3																			
7,000`	177,8																			
7,630`	193,7																			
8,000	203,0																			

Dimensional tolerances

Outside diameter, inch (mm)	Outside diameter permissible deviat	on, inch (mm)
	more	less
Up to 2.999 (76.17)	0.020 (0.51)	0.020 (0.51)
3.000-4.499 (76.20-114.27)	0.025 (0.64)	0.025 (0.64)
4.500-5.999 (114.30-152.37)	0.031 (0.79)	0.031 (0.79)
6.000-7.499 (152.40-190.47)	0.037 (0.94)	0.037 (0.94)
7.500-8.999 (190.50-228.57)	0.045 (1.14)	0.045 (1.14)
9.000-10.750 (228.60-273.05)	0.050 (1.27)	0.050 (1.27)

Wall thickness as a percentage outside	Wall thickness permissible deviation		
diameter	OD up to 2.999 (76.19)	OD = 3.000 (76.20) - 5.999 (152.37)	OD = 6.00 (152.40) - 10.750 (273.05)
Less than 15	+/- 12.5 %	+/- 10.0 %	+/- 10.0 %
15 and more	+/- 10.0 %	+/- 7.5 %	+/- 10.0 %

Lengths

Pipes are supplied with lengths according to standard requirements.

Any lengths different from the standard ones are subject to additional negotiations.

Protection

Pipes are supplied:

- black and bare
- external varnished with black or clear lacquer
- oile

Upon request pipes ends are protected with plastic caps.

Marking

Pipes are supplied with marking according to standards and customer requests.

Marking is painted and/or hard stenciled on pipe ends. The same data, as well as additional information according to customer's request, are indicated on the bundle tags.

Certification

GOST 8731-74, GOST 8732-78 Seamless hot-rolled steel tubes

Chemical composition

	Elements cont	ent, %							
Steel Grade	C, %	Si, %	Mn, %	Cr, % not more than	S, P	Cu	Мо	Ni	Al
10	0.07-0.14	0.17-0.37	0.35-0.65	0.15					
20	0.17-0.24	0.17-0.37	0.35-0.65	0.25					
35	0.32-0.40	0.17-0.37	0.50-0.80	0.25					
45	0.42-0.50	0.17-0.37	0.50-0.80	0.25					
10G2	0.07-0.15	0.17-0.37	1.20-1.60	-					
20G	0,17-0,24	0,17-0,37	0,70-1,00	-					
50G	0,48-0,56	0,17-0,37	0,70-1,00	-					
20H	0.17-0.23	0.17-0.37	0.50-0.80	0.70-1.00					
40H	0.36-0.44	0.17-0.37	0.50-0.80	0.80-1.10					
30HGSA	0,28-0,34	0,90-1,20	0,80-1,10	0,80-1,10					
15HM	0.11-0.18	0.17-0.37	0.40-0.70	0.80-1.10					
30HMA	0,26-0,34	0,17-0,37	0,40-0,70	0,80-1,10			0,15-0,25		
12HN2	0,09-0,16	0,17-0,37	0,30-0,60	0,60-0,90				1,50-1,90	
09G2S	≤0,12	0,50-0,80	1,30-1,70	≤0,30					
32HA	0.32- 0.35	0.17- 0.37	0.55-0.85	1.00-1.10	≤0.025	≤0.20		≤0.20	≥ 0.02

Mechanical properties

Grade designation	Tensile strength, σ _в , kgs/mm² (MPa)	Yield strength, σ_{T} , kgs/mm ² (MPa)	Elongation, δ5 , %	Brinell hardness (wall thickness 10 mm)	
diade designation	Not less than			Imprint diameter , mm, not less than	Hardness number HB, not more than
10	36 (353)	22 (216)	24	5,1	137
20	42 (412)	25 (245)	21	156	
35	52 (510)	30 (294)	17	4,4	187
45	60 (588)	33 (323)	14	4,2	207
10G2	48 (470)	27 (265)	21	4,3	197
20G	46 (450)	28 (275)	24	4,5	179
50G	66 (650)	40 (390)	13	4,0	229
20H	44 (431)	29(284)	16	4,5	179
40H	67 (657)	36 (352)	9	3,7	269
30HGSA	70 (686)	41 (402)	11	4,0	229
15HM	44 (431)	23 (226)	21	4,5	179
30HMA	60 (588)	40 (392)	13	4,0	229
12HN2	55 (539)	40 (392)	14	4,2	207

	Grade designation	Tensile strength, $\sigma_{_{\rm B}}$, MPa	Yield strength, $\sigma_{_{\!\scriptscriptstyle T}}$, MPa	Percent elongation, δ_s , %	Impact work, KCU, J/sm² Longitudinal direction	J, J/sm²					
					t=20°C	t=20°C		t=-60°C			
		Not less than									
ſ	09Г2С	450	325	21	59	39	29	29			

Grade designation	Tensile strength, σв, MPa	Yield strength, στ, MPa	Percent elongation, δ5,%	Necking, Ψ, %	Impact work, KV, J, t=-20°C	Hardness, HB
_	Not less than					
32XA*	830	730	12	40	27	269-311

Note:

* - Mechanical properties after quenching and tempering. Quenched and tempered pipes with outside diameter \geq 100 mm and wall thickness \leq 28 mm can be produced. Mechanical properties of pipes with other dimensions are defined on heat-treated samples.

Outside	Wal	l thick	ness																					
diameter, mm	3	3,2	3,5	4	4,5	5	5,5	6	6,5	7	7,5	8	8,5	9	9,5	10	11	12	13	14	15	16	17	18
32,0																								
33,7																								
38,0																								
42,0																								
42,4																								
45,0																								
48,3																								
50,0																								
51,0																								
57,0																								
60,0																								
60,3																								
63,5																								
70,0																								
73																								
76																								
83																								
89																								
95																								
102																								
108																								
114																								
121																								
127																								
133																								
140																								
146																								
152																								
159																								
168																								
180																								
194																								
203																								
219																								
245																								
273																								
299																								
325																								
351																								
356																								
377																								

Outside	Wal	l thick	ness																				
diameter, mm	19	20	22	24	25	26	28	30	32	34	35	36	38	40	42	45	48	50	56	60	63	65	70
32,0																							
33,7																							
38,0																							
42,0																							
42,4																							
45,0																							
48,3																							
50,0																							
51,0																							
57,0																							
60,0																							
60,3																							
63,5																							
70,0																							
73																							
76																							
83																							
89																							
95																							
102																							
108																							
114																							
121																							
127																							
133																							
140																							
146																							
152																							
159																							
168																							
180																							
194																							
203																							
219																							
245																							
273																							
299																							
325																							
351																							
356																							
377																							

Chemical composition

	Elements content	t, %							
Steel Grade	C, %	Si, %	Mn, %	Cr, % not more than	S, P	Cu	Мо	Ni	Al
10	0.07-0.14	0.17-0.37	0.35-0.65	0.15					
20	0.17-0.24	0.17-0.37	0.35-0.65	0.25					
35	0.32-0.40	0.17-0.37	0.50-0.80	0.25					
45	0.42-0.50	0.17-0.37	0.50-0.80	0.25					
20H	0.17-0.23	0.17-0.37	0.50-0.80	0.70-1.00					
40H	0.36-0.44	0.17-0.37	0.50-0.80	0.80-1.10					
09G2S	≤0,12	0,50-0,80	1,30-1,70	≤0,30					

Dimensional tolerances

Outside diameter, mm	Permissible deviation of outside diameter	
	Enhanced accuracy	Usual accuracy
Less than 50	± 5 mm	± 5 mm
50 - 219	± 0,8 %	± 1,0 %
More than 219	± 1,0 %	± 1,25 %

Outside diameter, mm	Wall thickness, mm	Permissible deviation for wall thickness	
outside diameter, min	wall thickness, mili	Enhanced accuracy	Usual accuracy
	S ≤ 15	± 12,5 %	+12,5/-15 %
Less than 219	15 < S ≤ 30	+10/-12,5 %	±12,5%
	S > 30	± 10	+10/-12,5 %
	S ≤ 15	+12.5/-	-15,0 %
More than 219	15 < S ≤ 30	±12,	.5 %
	S > 30	+10,0/-	-12,5%

Lengths

Pipes are supplied with lengths according to standard requirements.

Any lengths different from the standard ones are subject to additional negotiations.

Protection

Pipes are supplied:

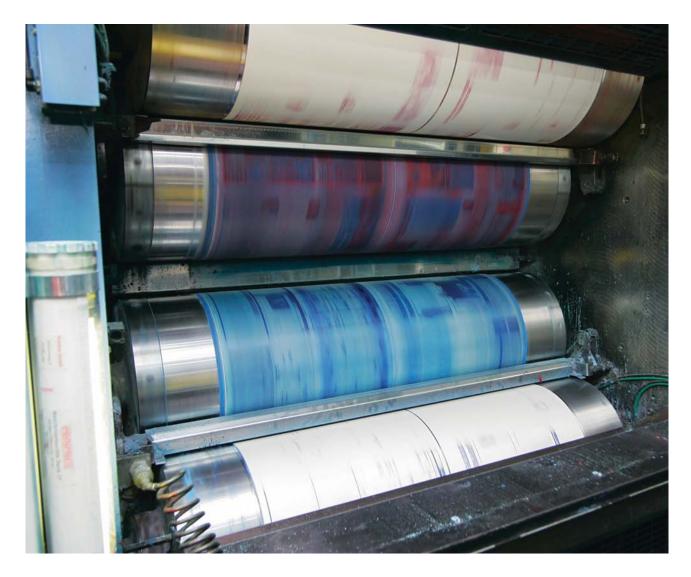
- black and bare
- external varnished with black or clear lacquer

Upon request pipes ends are protected with plastic caps.

Marking

Pipes are supplied with marking according to standards and customer requests.

Marking is painted and/or hard stenciled on pipe ends. The same data, as well as additional information accoding to customer's request, are indicated on the bundle tags.


Certification

GOST 23270-89

Tube-billets for mechanical treatment

Chemical composition

	Elements cont	ent, %							
Steel Grade	C, %	Si, %	Mn, %	Cr, % not more than	S, P	Cu	Мо	Ni	Al
10	0.07-0.14	0.17-0.37	0.35-0.65	0.15					
20	0.17-0.24	0.17-0.37	0.35-0.65	0.25					
35	0.32-0.40	0.17-0.37	0.50-0.80	0.25					
45	0.42-0.50	0.17-0.37	0.50-0.80	0.25					
10G2	0.07-0.15	0.17-0.37	1.20-1.60	-					
20G	0,17-0,24	0,17-0,37	0,70-1,00	-					
50G	0,48-0,56	0,17-0,37	0,70-1,00	-					
20H	0.17-0.23	0.17-0.37	0.50-0.80	0.70-1.00					
40H	0.36-0.44	0.17-0.37	0.50-0.80	0.80-1.10					
30HGSA	0,28-0,34	0,90-1,20	0,80-1,10	0,80-1,10					
15HM	0.11-0.18	0.17-0.37	0.40-0.70	0.80-1.10					
30HMA	0,26-0,34	0,17-0,37	0,40-0,70	0,80-1,10			0,15-0,25		
12HN2	0,09-0,16	0,17-0,37	0,30-0,60	0,60-0,90				1,50-1,90	
09G2S	≤0,12	0,50-0,80	1,30-1,70	≤0,30					
32HA	0.32- 0.35	0.17- 0.37	0.55-0.85	1.00-1.10	≤0.025	≤0.20		≤0.20	≥ 0.02
38H2MUA	0.35-0.42	0.20-0.45	0.30-0.60	1.35-1.65					

Mechanical properties

Grade	Tensile strength, σ_{B} , kgs/mm ² (MPa)	Yield strength, σ _τ , kgs/mm² (MPa)	Elongation, δ_s , %	Brinell hardness (wall thickness 10 mn	n)
designation	Not less than			Imprint diameter , mm, not less than	Hardness number HB, not more than
10	36 (353)	22 (216)	24	5,1	137
20	42 (412)	25 (245)	21	4,8	156
35	52 (510)	30 (294)	17	4,4	187
45	60 (588)	33 (323)	14	4,2	207
10G2	48 (470)	27 (265)	21	4,3	197
20G	46 (450)	28 (275)	24	4,5	179
50G	66 (650)	40 (390)	13	4,0	229
20H	44 (431)	29(284)	16	4,5	179
40H	67 (657)	36 (352)	9	3,7	269
30HGSA	70 (686)	41 (402)	11	4,0	229
15HM	44 (431)	23 (226)	21	4,5	179
30HMA	60 (588)	40 (392)	13	4,0	229
12HN2	55 (539)	40 (392)	14	4,2	207

	Tensile strength,	Yield strength,	Percent elongation,	Impact work, KCU J/sn	n²		Impact work, KCV, J/sm²
Grade designation	σ _в , MPa	σ, MPa	δ_{5} , %	Longitudinal direction			
				t=20°C	t=-40°C	t=-70°C	t=-60°C
	Not less than						
09Г2С	450	325	21	59	39	29	29

Grade designation	Tensile strength, σв, MPa	Yield strength, στ, MPa	Percent elongation, δ_5 , %	Necking, Ψ, %	Impact work, KV, J t=-20°C	Hardness, HB
	Not less than					
32XA*	830	730	12	40	27	269-311

Note:

Mechanical properties on heat-treated samples

Steel designation	Tensile strength, σв, MPa (kgs/mm²)	Percent elongation, δ_s , %	Necking for wall thickness more than 5 mm, Ψ, %	Impact toughness for wall thickness more than 12 mm, a _k kgs/sm ²	Brinell hardness (imprint diameter), mm
	Not more than				
38H2MUA	980 (100)	14	50	9	3,4-3,7

Outside	Wa	II thi	ickn	ess																																											
diameter,	3	3,2	3,5	4	4,5	5	5,5	6	6,5	7	7,5	8	8,5 9	1	9,5	10	11	12	13	14	15	16	17	18	19	20	22	24	25	26	28	30	32	34	35	36	38	40	42	45	48	50	56	60	63	65	70
mm																																															
32,0														Т																																	
33,7														П																																	
38,0														П								Т				Τ																					
32,0 33,7 38,0 42,0																																															
42,4																																															
42,4 45,0 48,3 50,0 51,0 57,0 60,0 60,3 63,5														П										П																							
48,3																																															
50,0																																															
51,0																																															
57,0																																															
60,0																																															
60,3																																															
63,5																																															
70,0																																															
70,0 73 76 83 89																																															
76																																															
83																																															
95																																															
102																																															
108																																															

^{* -} Mechanical properties after quenching and tempering. Quenched and tempered pipes with outside diameter \geq 100 mm and wall thickness \leq 28 mm can be produced. Mechanical properties of pipes with other dimensions are defined on heat-treated samples.

Outside		all th																																												
diameter,	3	3,2	3,5	4	4,5	5	5,5	6	6,5	7	7,5	8	8,5 9	9,5	10	11	12	13	14	15	16	17	18	19	20	22	24	25	26	28	30	32	34	35	36	38	40	42	45	48	50	56	60	63	65	70
mm																																														
114																П		Т		П	Т	Т		Т		Т		Т		Т																
121																				Т		Т																								
127																		Т		Т		Т		Т		Т		Т		Т								П								П
133																		Т		Т	T	Т		Т		Т		Т		T																П
140																						T																								П
146																																														
152																		Т		Т		Т				Т		Т		Т																
159														T		Т		Т		Т	T	Т		Т		Т		Т		Т		Т														П
168																		T		T		T		T		T		T																		П
180									П																																					П
194																				Т		Т																								
203																		Т		Т		Т		Т		Т		Т		Т								П								П
219 245																																														
245																																														
273																																														
273 299																		Т		Т		Т						Т		Т																П
325																						Т																								П
351																																														П
351 356 377																																														
377																						Т																								

Dimensional tolerances

Outside diameter, mm	Permissible deviation of outside diameter	
Outside diameter, min	Enhanced accuracy	Usual accuracy
Less than 50	± 5 mm	± 5 mm
50 - 219	± 0,8 %	± 1,0 %
More than 219	± 1,0 %	± 1,25 %

Outside diameter, mm	Wall thickness, mm	Permissible deviation for wall thickness				
outside diameter, min	wall tilickliess, fillif	Enhanced accuracy	Usual accuracy			
	S ≤ 15	± 12,5 %	+12,5/-15 %			
Less than 219	15 < S ≤ 30	+10/-12,5 %	±12,5%			
	S > 30	± 10	+10/-12,5 %			
	S ≤ 15	+12,5/-	15,0 %			
More than 219	15 < S ≤ 30	±12,5 %				
	S > 30	+10,0/-	-12,5%			

Lengths

Pipes are supplied with lengths according to standard requirements.

Any lengths different from the standard ones are subject to additional negotiations.

Protection

Pipes are supplied:

- black and bare
- external varnished with black or clear lacquer
- oiled

Upon request pipes ends are protected with plastic caps.

Marking

Pipes are supplied with marking according to standards and customer requests.

Marking is painted and/or hard stenciled on pipe ends. The same data, as well as additional information according to customer's request, are indicated on the bundle tags.

Certification

GOST 8733-74, GOST 8734-75 Seamless cold-formed steel tubes

Chemical composition

Steel Grade	Elements content,	, %				
	C, %	Si, %	Mn, %	Cr, % not more than	Мо	Ni
10	0.07-0.14	0.17-0.37	0.35-0.65	0.15		
20	0.17-0.24	0.17-0.37	0.35-0.65	0.25		
35	0.32-0.40	0.17-0.37	0.50-0.80	0.25		
45	0.42-0.50	0.17-0.37	0.50-0.80	0.25		
10G2	0.07-0.15	0.17-0.37	1.20-1.60	-		
20G	0,17-0,24	0,17-0,37	0,70-1,00	-		
50G	0,48-0,56	0,17-0,37	0,70-1,00	-		
20H	0.17-0.23	0.17-0.37	0.50-0.80	0.70-1.00		
40H	0.36-0.44	0.17-0.37	0.50-0.80	0.80-1.10		
30HGSA	0,28-0,34	0,90-1,20	0,80-1,10	0,80-1,10		
15HM	0.11-0.18	0.17-0.37	0.40-0.70	0.80-1.10		
30HMA	0,26-0,34	0,17-0,37	0,40-0,70	0,80-1,10	0,15-0,25	
12HN2	0,09-0,16	0,17-0,37	0,30-0,60	0,60-0,90		1,50-1,90
09G2S	≤0,12	0,50-0,80	1,30-1,70	≤0,30		

Mechanical properties

Condo decionation	Tensile strength, $\sigma_{_{\rm B}}$, kgs/mm² (MPa)	Yield strength, σ _τ , kgs/ mm² (MPa)	Elongation, $\delta_{_5}$, %	Brinell hardness (wall thickness 10 mm)	
Grade designation	Not less than			Imprint diameter , mm, not less than	Hardness number HB, not more than
10	36 (353)	22 (216)	24	5,1	137
20	42 (412)	25 (245)	21	4,8	156
35	52 (510)	30 (294)	17	4,4	187
45	60 (588)	33 (323)	14	4,2	207
10G2	48 (470)	27 (265)	21	4,3	197
20G	46 (450)	28 (275)	24	4,5	179
50G	66 (650)	40 (390)	13	4,0	229
20H	44 (431)	29(284)	16	4,5	179
40H	67 (657)	36 (352)	9	3,7	269
30HGSA	70 (686)	41 (402)	11	4,0	229
15HM	44 (431)	23 (226)	21	4,5	179
30HMA	60 (588)	40 (392)	13	4,0	229
12HN2	55 (539)	40 (392)	14	4,2	207

			pth, Percent elongation, $\delta_{_5}$, $\%$	Impact work, KCU J/sm	Impact work, KCV, J/sm ²			
Grade designation				1, Longitudinal direction				
	0			t=20°C	t=-40°C	t=-70°C	t=-60°C	
	Not less than							
09Г2С	450	325	21	59	39	29	29	

	3,5	4	4,5	5	5,5	6	6,5	7	7,5	8	8,5	9	9,5	10	11	12	13	14	15	16
32																				
34																				
36																				
38																				
40																				
42																				
45																				
48																				
50																				
51																				
53																				
54																				
56																				
57																				
60																				
63																				
65																				
68																				
70																				
73																				
75																				
76																				
80																				

Dimensional tolerances

Outside diameter, mm	Outside diameter permissible deviation	Wall thickness	Wall thickness permissible deviation		
outside diameter, min	Enhanced accuracy	wdii tilickiiess	Enhanced accuracy		
30 - 50	± 0.4 mm	Up to 5 mm	± 10 %		
≥ 50	± 0.8%	Above 5 mm	± 8 %		

Lengths

Pipes are supplied with lengths according to standard requirements.

Any lengths different from the standard ones are subject to additional negotiations.

Protection

Pipes are supplied:

- black and bare
- external varnished with black or clear lacquer
- oiled

Upon request pipes ends are protected with plastic caps.

Marking

Pipes are supplied with marking according to standards and customer requests.

Marking is painted and/or hard stenciled on pipe ends. The same data, as well as additional information according to customer's request, are indicated on the bundle tags.

Certification

COLD DRAWN SEAMLESS STEEL TUBES FOR HYDRAULIC CYLINDERS EN 10305-1

Steel tubes for precision applications: Seamless cold-drawn tubes

Chemical composition

Charl desirentian	Elements content, %	Elements content, %										
Steel designation	C max	Si max	Mn max	P max	S max	V max	Al min					
E355	0.22	0.55	1.60	0.025	0.025		0,02					
E410	0,16-0.22	0,10-0.55	0,30-1.70	0.025	0.025	0,08-0.15	0,01-0,06					

Mechanical properties

Steel designation	Delivery condition	Yield strength, R _{EH} N/mm ²	Tensile strength Rm, N/mm²	Elongation A, %	Impact test, KV, J Test temperature, -20°C Longitudinal direction				
		Not less than							
E355	+SR	450	580	10	27				
E355	+N	355	490-530	22	27				
E410	+SR	590	690	12	27				
E410	+N	410	550-700	22	27				

Inside	Wall thickness	Wall thickness							
diameter, mm	5 mm	6 mm	7,5 mm	10 mm	12,5mm	15 mm			
50	60	62							
55	65	67	70	75					
60	70	72	75	80					
63	73	75	78	83					
65	75	77	80	85					
70	80	82	85						
75	85	87							
80		92	95	100					
85		97	100	105		115			
90			105	110		120			
95			110	115	120	125			
100			115	120	125	130			
105			120	125	130	135			
110			125	130	135	140			
115			130	135	140	145			
120			135	140	145				
125			140	145					

The value inside boxes represents the OD.

Dimensional tolerances

Inside diameter permissible deviation						
-0.20 ÷ -0.45	-0.30 ÷ -0.70	-0.25 ÷ -0.55	-0.40 ÷ -0.70	-0.50 ÷ -0.90		

Length supplied

- random from 4.5 up to 12.5 meters
- fixed within the random length range

Concentricity

The following concentricity values are guaranteed:

OUTSIDE DIAMETER	CONCENTRICITY
≤ 125 mm	0.06
> 125 mm	0.07

Concentricity is measured according to the formula:

(WTmax - WTmin)

(WTmax + WTmin)

Where WTmax and WTmin are understood to be measured on the same tube cross-section.

Ovality

Ovality is guaranteed within the diameter tolerances.

Straightness

Local deviation from straight line max 1 mm per each meter length.

Total deviation from straightness:

max 3.5 mm for tubes with lengths of less than 6 m; for tubes with lengths greater than 6 m, the tolerance will be increased by 0.5 mm for each 1 m over 6 m.

Protection

Pipes are supplied:

- black and bare
- oiled internally and externally

Upon request pipes ends are protected with plastic caps

Marking

Pipes are supplied with marking according to standards and customer requests.

Marking is painted and/or hard stenciled on pipe ends. The same data, as well as additional information according to customer's request, are indicated on the bundle tags.

Certification

DIN 2391-1, 2 Seamless precision steel tubes

Chemical composition

	Steel designation	Elements content, %	lements content, %									
		C max	Si max	Mn max	P max	S max						
	St 52	0.22	0.55	1.60	0.025	0.025						

Mechanical properties at t=20±2°C

	Delivery condition	Delivery condition Delivery condition									
Steel	BK		BKS				NBK				
designation	Tensile strength Rm, N/mm²	Percent elonga- tion A, %	Tensile strength Rm, N/mm²	Yield strength, R _{EH} N/mm ²	Necking A, %	Tensile strength Rm, N/mm²	Upper yield strength, R _{EH} N/mm²	Percent elongation A, %			
	Not less										
St 52	640	4	580	420	10	490-630	355	22			

Inside	Wall thickness	Wall thickness									
diameter, mm	5 mm	6 mm	7,5 mm	10 mm	12,5mm	15 mm					
50	60	62									
55	65	67	70	75							
60	70	72	75	80	85						
63	73	75	78	83	88						
65	75	77	80	85	90						
70	80	82	85	90							
75	85	87	90	95							
80	90	92	95	100							
85		97	100	105							
90			105	110							
95			110	115	120	125					
100			115	120	125	130					
105			120	125	130	135					
110			125	130	135	140					
115			130	135	140	145					
120			135	140							
125			140	145							

The value inside boxes represents the OD.

Dimensional tolerances

Inside diameter permissible deviation						
-0.20 ÷ -0.45		-0.25 ÷ -0.55	-0.40 ÷ -0.70	-0.50 ÷ -0.90		

Length supplied

- random from 4.5 up to 12.5 meters
- fixed within the random length range

Concentricity

The following concentricity values are guaranteed:

OUTSIDE DIAMETER	CONCENTRICITY
≤ 125 mm	0.06
> 125 mm	0.07

Concentricity is measured according to the formula:

(WTmax - WTmin)
(WTmax + WTmin)

Where WTmax and WTmin are understood to be measured on the same tube cross-section.

Ovality

Ovality is guaranteed within the diameter tolerances.

Straightness

Local deviation from straight line max 1mm per each meter length.

Total deviation from straightness:

max 3.5 mm for tubes with lengths of less than 6 m; for tubes with lengths greater than 6 m, the tolerance will be increased by 0.5 mm for each 1 m over 6 m.

Protection

Pipes are supplied:

- black and bare
- oiled internally and externally

Upon request pipes ends are protected with plastic caps.

Marking

Pipes are supplied with marking according to standards and customer requests.

Marking is painted and/or hard stenciled on pipe ends. The same data, as well as additional information according to customer's request, are indicated on the bundle tags.

Certification

BEARING TUBES Chemical composition

100Cr6										
С	Si	Mn	Cr	Р	S	Mo	Cu	Al	Ti	Ni
0.93-	0.15-	0.25-	1.35	Not more then						
1.05	1.05 0.35 0.45 1.60 0.025 0.015 0.10 0.30 0.050 0.003 0.15									
Tolerances - C +/-0.03%, Si +/-0.03%, Mn +/-0.04%, PS +0.005%, Cr +/-0.05%, Mo +/-0.03%,										

Tolerances – C +/-0.03%, Si +/-0.03%, Mn +/-0.04%, P,S +0.005%, Cr +/-0.05%, Mo +/-0.03% Al +0.010%, Cu +0.03%, O – max 0.0015%.

Macro-inclusions

The content of macro-inclusions shall not exceed a length of 2.5 mm per dm 2 as measured by the blue fracture test. The maximum length for a single inclusion shall not exceed 3 mm.

Micro-inclusions

Heat check according to ISO 4967:1998 (E), Method A.

The micro-inclusion rating can be made on the sample of bar with a reduction ratio of minimum 1:10 or maximum 1:60 for continuously cast material. The micro-inclusion rating shall not exceed the limits specified below.

Inclusion type	Thin	Heavy		
A	2.0	1.5		
В	1.5	0.5		
С	0.0	0.0		
D	1.0	0.5		
DS	1.5			

Microstructure

In accordance to SEP 1520

Pearlite amount

PA ≤ 3.0.

Carbide size

2.1 to 2.3.

Carbide network

4.3 or 5.3 maximum respectively

Carbide segregation

6.2 and 7.3 maximum respectively

Hardness

Hot-rolled tubes:

170 - 210 HBS, according to ISO 6506-1:1999

Cold rolled tubes:

220 - 320 HBS, according to ISO 6506-1:1999

Decarburization:

Hot rolled tubes // Pilled internal surface

Internal surface – max. 0,5 mm. External surface – 0 mm.

Hot rolled tubes // Not Pilled

Internal surface – max. 0,5 mm. External surface – 0,5 mm.

Cold rolled tubes // Internal surface - max. 0,25 mm External surface - max. 0,25 mm.

Hot rolled tubes size range:

Outside	Wall thickness,	Wall thickness, mm								
diameter	8,0-9,0	9,1-10,0	10,1-11,0	11,1-13,0	13,1-15,0	15,1-17,0	17,1-19,0	19,1-21,0	21,1-23,0	23,1-25,0
82,1-90,0										
90,1-100,0										
100,1-110,0										
110,1-120,0										
120,1-130,0										
130,1-140,0										
140,1-150,0										
150,1-160,0										
160,1-170,0										
170,1-180,0										

Cold rolled tubes size range:

Outside diameter	Wall thickness, mm								
diameter	3,6-5,0	5,1-7,0	7,1-9,0	9,1-11,0	11,1-13,0	13,1-15,0			
34,1-40									
40,1-50									
50,1-60									
60,1-70									
70,1-80									
80,1-83									

Dimensional tolerances

Diameter

Hot rolled tubes: -0/+0,50+0,005 x Dimension

Cold rolled tubes: - 0 /+ 0,40

Wall Thickness

Hot rolled tubes:

Dimension / Wall thickness	Tolerance (mm)
0D/WT 11	-0/+15%
0D/WT= 11-12,5	-0/+20%
0D/WT 12,5	-0/+25%

Cold rolled tubes = -0/+12%

Straightness

Any deviation from a straight line must not exceed 0.001 x the measured length.

The measured length must be minimum 1000 mm.

Out-of-roundness

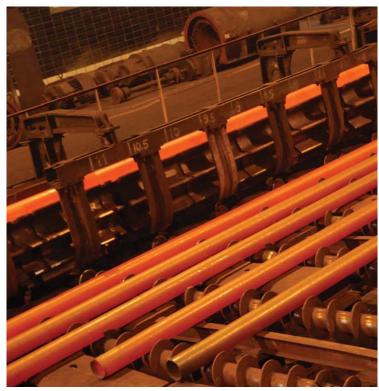
Maximum 80% of the OD tolerance range.

Protection

Pipes are supplied:

- black and bare
- oiled internally and externally

Upon request pipes ends are protected with plastic caps.


Marking


Pipes are supplied with marking according to standard and customer request.

Marking is paint and/or hard stenciled on the ends of pipes. The same data, as well as additional information per customer's request, is indicated on the bundle's tags.

Certification

Interpipe Europe SA

Via San Salvatore 13 - P.O. Box 745 CH-6902 Paradiso - Lugano, Switzerland

Tel.: +41 91 261 39 00 Fax: +41 91 261 39 01 E-mail: info@eu.interpipe.biz

Interpipe Middle East Office №: LB191008, P.O. Box 262810,

Jebel Ali, Dubai - UAE Tel.: **+971 4 885 7411** Fax: +971 4 885 7412 E-mail: info@ae.interpipe.biz

North American Interpipe

1800 West Loop South, Suite 1350, Houston, Texas, 77027 - USA

Tel.: +1 713 333 0333 Fax: +1 713 333 0330 E-mail: info@us.interpipe.biz

Interpipe M

10, Presnenskaya naberezhnaya 123317 Moscow, Russia

Tel.: **+7 495 933 29 29** Fax: +7 495 933 29 27 E-mail: info@ru.interpipe.biz

Interpipe Ukraine

1A, Pisarzhevskogo street 49000 Dnepropetrovsk, Ukraine

Tel.: **+380 56 736 60 06** Fax: **+380 562 389 482, 389 580** E-mail: info@ua.interpipe.biz

www.interpipe.biz